
Monitoring the Grid with the Globus Toolkit MDS4

Jennifer M. Schopf1,2,4, Laura Pearlman3, Neill Miller2, Carl Kesselman3, Ian
Foster1,2, Mike D’Arcy3, Ann Chervenak3
1 Mathematics and Computer Science Division, Argonne National Laboratory
2 Department of Computer Science, The University of Chicago
3Information Science Institute, University of Southern California
4 UK National eScience Centre, University of Edinburgh

Abstract. The Globus Toolkit Monitoring and Discovery System (MDS4) defines and
implements mechanisms for service and resource discovery and monitoring in distributed
environments. MDS4 is distinguished from previous similar systems by its extensive use of
interfaces and behaviors defined in the WS-Resource Framework and WS-Notification
specifications, and by its deep integration into essentially every component of the Globus
Toolkit. We describe the MDS4 architecture and the Web service interfaces and behaviors that
allow users to discover resources and services, monitor resource and service states, receive
updates on current status, and visualize monitoring results. We present two current
deployments to provide insights into the functionality that can be achieved via the use of these
mechanisms.

1. Overview
The resources available to a virtual organization (VO) in a Grid environment can change frequently as
new resources and services are added and old ones are removed or become inaccessible. In addition,
resource and service properties may change: for example, when a data server is upgraded to larger
capacity, different access rates, or different access protocols. These dynamic behaviors can make both
discovery—the process of finding suitable resources to perform a task—and monitoring—the process
of observing resources or services to track their status for purposes such as fixing problems and
tracking usage—significant undertakings.

Typical monitoring and discovery use cases include providing data so that resource brokers can
locate computing elements appropriate for a job, streaming data to a steering application so that
adjustments can be made to a running application, and notifying system administrators when changes
in system load or disk space availability occur, in order to identify possible performance anomalies.

The Globus Toolkit’s solution to these closely related problems is its Monitoring and Discovery
System (MDS): a suite of components for monitoring and discovering resources and services. MDS4,
the version in the Globus Toolkit 4 [1], uses standard interfaces defined within the WS-Resource
Framework (WSRF) and WS-Notification (WS-N) specifications [2] to provide query and subscription
interfaces to arbitrarily detailed resource data (modeled in XML).

2. MDS4 Details
MDS4 builds heavily on capabilities provided by the WSRF and WS-N specifications; indeed, it can
be viewed as an exemplary use case for those specifications, which define the mechanisms used to
describe information sources, access information via both queries and subscriptions, and manage

information lifetimes. The neck of the MDS4 “protocol hourglass” (Figure 1) comprises not only these
standard protocols for data access and delivery but also standard schemas for information
representation, such as the GLUE schema [3]. Below the neck of the hourglass, MDS4 interfaces to
different local information sources, translating their diverse schemas into appropriate XML schema
transmitted over WSRF/WS-N protocols. Above the neck of the hourglass, various tools and
applications can take advantage of the uniform Web services query, subscription, and notification
interfaces to those information sources that MDS4 implements.

GLUE Schema Attributes
(cluster info,
queue info, FS info)

Information Users :
Schedulers, Portals, etc.

Cluster monitors
(Ganglia, Hawkeye,
Clumon, and Nagios) Services

(GRAM,RFT,RLS,etc.)

Queueing systems
(PBS, LSF, Torque)

WS standard
interfaces for
subscription,
registration,
notification

GLUE Schema Attributes
(cluster info,
queue info, FS info)

Information Users :
Schedulers, Portals, etc.

Cluster monitors
(Ganglia, Hawkeye,
Clumon, and Nagios)

Cluster monitors
(Ganglia, Hawkeye,
Clumon, and Nagios) Services

(GRAM,RFT,RLS,etc.)
Services

(GRAM,RFT,RLS,etc.)

Queueing systems
(PBS, LSF, Torque)
Queueing systems
(PBS, LSF, Torque)

WS standard
interfaces for
subscription,
registration,
notification

Figure 1: MDS4 provides a protocol
hourglass.

 Figure 2: WebMDS page for TeraGrid
resource discovery and monitoring.

2.1 Higher-Level Services
An MDS4 Index service collects information about Grid resources and makes this information
available as resource properties. It differs from a UDDI registry [4] primarily in the facts that it stores
not only the location from which a piece of data is available, but also a cached version of the data—
and maintains that cached copy current via lifetime management mechanisms. A Grid will typically
operate multiple Indexes that maintain different data for different purposes. In the simplest case, Index
servers automatically keep track of resource information for locally-running WSRF-based Globus
services and may be configured to maintain information about other local resources. On a larger scale,
VOs may maintain one or more Indexes to maintain VO-wide resource information by collecting data
from the Index servers running at many sites.

The Trigger service collects information and compares that data against a set of conditions defined
in a configuration file. When a condition is met, an action takes place, such as emailing a system
administrator when the disk space on a server reaches a threshold.

The Index and Trigger service implementations are both built on the Aggregator Framework, a
software framework for building services that collect and aggregate data. This framework can be used
to construct other services: for example, it would be straightforward to implement a variant of the
Index service that makes data available in other formats specific to a given scheduling system, such as
Condor.
• Services built on this framework are sometimes called aggregator services. Such services share

common mechanisms to:
• Collect information (via subscription, polling, or execution) from information providers
• Use a common configuration mechanism to specify what data to get, and from where.
• Use a soft consistency mode so that published information is renewed at an administrator-

controllable frequency.

• Self-clean the data storage by tagging each registration with a lifetime, and if a registration expires
without being refreshed, it and its associated data are removed from the server. Thus, outdated
entries are removed automatically when they cease to renew their registrations.

2.2 Information Providers
Information providers (IP) are the mechanism MDS4 uses to publish data into an aggregator service.
An IP can be a WSRF-compliant service from which data is obtained via WS-ResourceProperty or
WS-Notification mechanisms or an executable program that obtains data via some domain-specific
mechanism, such as executing a script, file scraping or running an executable. Currently available IPs
include cluster data interfaces to Nagios, Ganglia, CluMon and Hawkeye, basic queue data fetched
from PBS, LSF or Condor, and service data from all GT4 Web services (CAS, GRAM, RFT, MDS) as
well as GridFTP and RLS.

2.3 User Interfaces
An advantage of using a standard, widely-adopted data format such as XML is that one can then use
various commodity tools to manipulate data. For example, we have developed a tool called WebMDS
that uses standard resource property requests to query resource property data and XSLT transforms to
format and display them, as shown in Figure 2. In this way, we obtain user-friendly front-end to Index
data. In addition, GT4 command-line clients (wsrf-query, wsrf-get-property, wsrf-get-properties) and
corresponding Java, C, and Python API implement resource property query operations that can be
used to query an Index directly, when required.

3. Use Cases
3.1 TeraGrid: Resource Discovery
TeraGrid [5] is an infrastructure project across nine US sites to create an integrated, persistent
computational resource, which enables more than 102 teraflops of computing capability and more than
15 petabytes (quadrillions of bytes) of online and archival data storage with rapid access and retrieval
over high-performance networks. TeraGrid has been used by over 1,000 projects.

 One of the near-term goals for the TeraGrid project is to develop and deploy a scheduling system
that can interact with the TeraGrid sites to make resource selection decisions across the resources
automatically, unlike the current set up where users must specify exactly which machine to run on.
Progress toward this goal, however, has been impeded by the lack of a common monitoring
framework across the various sites, in part due to different local policies – different sites have
deployed different queuing systems (Open PBS, PBS Pro, Torque, etc.) and different cluster
monitoring systems (Clumon, Nagios, Ganglia, etc.).

As part of the current GT4 deployment on TeraGrid, sites are deploying MDS4 infrastructure that
interacts with local systems to gather data and provides a single, standard interface to the data. While
there is currently no common agreement for all of the data needed to make resource selection
decisions, based on our previous work with scheduling systems and analysis of several common
schedulers used with queued platforms such as the TeraGrid, we have defined a set of approximately
30 attributes to gather from each site.

We currently gather queue-specific information (e.g., location of the GRAM server for a queue, the
number of jobs currently waiting in that queue) and host-specific information (e.g., the CPU type and
speed and the operating system). In addition, we allow for the grouping of similarly configured hosts
into clusters and subclusters as a way of aggregating some of the host information. Subclusters are
defined by the local site administrators such that they contain a set of hosts that have essentially the
same configuration (CPU information, OS information, etc.), and data is reported for the subcluster as
whole. In addition, each host record includes the name of the subcluster that the host belongs to.

As a result of the MDS4 deployment currently in progress, users have access to a simple Web
interface (example shown in Figure 2) to aid in resource selection decisions, and when a

metascheduler is deployed, it will have a common interface to the data they need across the TeraGrid,
through either command line or Java APIs.

3.2 Earth Systems Grid: Warning on Errors
The Earth System Grid (ESG) project [6] supports the next generation of climate modeling research by
providing the infrastructure and services that allow climate scientists to publish and access key data
sets based on climate simulation models. Important datasets that are provided by ESG to the climate
community include simulations generated by the NCAR Community Climate System Model (CCSM)
[7] and the Intergovernmental Panel on Climate Change (IPCC) [8] using infrastructure spread across
7 sites. These datasets are accessed by scientists throughout the world.

The Earth System Grid has become an important community resource for climate scientists. In
2005, users of the main ESG web portal at NCAR issued 37,285 requests to download 10.25 terabytes
of data. Use of the ESG portal has steadily increased, both in terms of the amount of data downloaded
and the number of registered users of the system. By the fourth quarter of 2005, NCAR portal users
downloaded approximately two terabytes of data per month. ESG registered 1881 users in 2005 and is
currently adding users at a rate of more than 150 per month.

Currently, the MDS4 deployment for ESG involves information providers to check the status of the
GridFTP data transfer services [9], the OPeNDAP [10] service which is used to filter and subset data
to reduce the amount of data that must be transferred the ESG, the web portal, two HTTP servers for
alternate data access, Replica Location Service catalogs [11], Storage Resource Managers [12], and
hierarchical mass storage systems.

Data from these information providers are reported to an Index service, and the resource
information collected by the MDS4 Index Service is also queried by the ESG web portal, shown in
Figure 3. The information in the Index Service is also polled periodically by the Trigger Service,
which determines whether specified trigger rules and conditions are satisfied and, if so, email is sent to
the system administrators to notify them of a service failure.

Figure 3: The ESG portal queries the Index service and displays resource satus -- smiling faces
indicate functioning services.

MDS4 has also been used to deduce the reason behind failures in at least two ways. First, we have

found that a failure examined in isolation may not accurately reflect the state of the system, and that
with system-wide data, a pattern of failure messages that occur close together in time can indicate a
problem at a higher level. For example, failure messages indicated that hierarchical storage resource
managers at three different locations failed simultaneously. Since the chance of such simultaneous
failures is remote, these errors are more likely an indication of a network outage or some failure of the
monitoring service or the client that queries the state of storage resource managers and hierarchical
storage systems.

Similarly, we have used the MDS to track data at a lower level to understand which component is
causing errors. The ESG portal at NCAR crashed periodically due to a lack of available file
descriptors. By using the monitoring infrastructure to check the usage of file descriptors, we were able
to detect how many file descriptors had been opened by the different services running on the portal
machine and eliminate some suspected sources of problems. We were also able to detect a sudden
spike in file descriptor usage to help debug the problem.

4. Conclusions
We have described how monitoring and discovery capabilities can be integrated into the design of a
distributed computing infrastructure so that any and every resource and service can be monitored and
discovered in a uniform manner. Using Web service standards that define the primitive interfaces and
behaviors, we have built the basis of a monitoring and discovery system for Grid use. It is currently
being used by one national-scale project for monitoring and error notifications and being deployed by
another for resource discovery.

Acknowledgments
Additional MDS support was provided by John Bresnahan, Mike Link, Eric Blau, and Mei-Hui Su.
This work was supported in part by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under contract W-31-109-Eng-38. Additional support was provided by
NSF NMI Award SCI-0438372.

References
[1] I. Foster, “A Globus Toolkit Primer”, www.globus.org/primer, 2005.
[2] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham, T. Maguire, D. Snelling, and S.

Tuecke, “Modeling and Managing State in Distributed Systems: The Role of OGSI and
WSRF”, Proc. of the IEEE, 93 (3). 604-612. 2005.

[3] “Glue Schema Specification”, www.hicb.org/glue/glue-schema/schema.html , 2005.
[4] “UDDI Standard”, http://www.uddi.org , 2006.
[5] “TeraGrid”, www.teragrid.org , 2006.
[6] D. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen, A. Chervenak, L. Cinquini, B.

Drach, I. Foster, P. Fox, J. Garcia, C. Kesselman, R. Markel, D. Middleton, V. Nefedova,
L. Pouchard, A. Shoshani, A. Sim, G. Strand, and D. Williams, “The Earth System Grid:
Supporting the Next Generation of Climate Modeling Research”, Proc. of the IEEE, 93
(3), p 485-495, 2005.

[7] "Community Climate System Model”, http://www.cgd.ucar.edu/csm/, 2006.
[8] "Intergovernmental Panel on Climate Change”, http://www.ipcc.ch/, 2006.
[9] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I. Foster, "The

Globus Striped GridFTP Framework and Server," Proc. SuperComputing 2005 (SC05),
2005.

[10] OPeNDAP Inc., "OPeNDAP: Open-source Project for a Network Data Access Protocol”,
http://opendap.org/, 2005.

[11] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and R. Schwartzkopf, "Performance
and Scalability of a Replica Location Service," Proc. Thirteenth IEEE Int'l Symposium
High Performance Distributed Computing (HPDC-13), 2004.

[12] A. Shoshani, A. Sim, and J. Gu, "Storage Resource Managers: Middleware Components for
Grid Storage," Proc. Nineteenth IEEE Symposium on Mass Storage Systems (MSS '02),
2002.

http://www.hicb.org/glue/glue-schema/schema.html
http://www.uddi.org/
http://www.teragrid.org/
http://opendap.org/,

	1. Overview
	2. MDS4 Details
	2.1 Higher-Level Services
	2.2 Information Providers
	2.3 User Interfaces

	3. Use Cases
	3.1 TeraGrid: Resource Discovery
	3.2 Earth Systems Grid: Warning on Errors

	4. Conclusions
	Acknowledgments
	References

